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Periodic structures have gained attention in the research community since they show attenuation zones in their frequency
response, called band gaps. In this paper, the interactions of two mechanisms of band gap formation in mono-coupled
periodic structures are examined, i.e., Bragg scattering and local resonators. With reference to longitudinal elastic
waves, an analytical study is carried out to describe in detail the formation of band gaps. Local resonators are im-
plemented via piezoelectric inserts shunted with a resonating electrical circuit, for which a non-traditional model is
needed since the study concerns higher frequencies with respect to those of the subwavelength regime. Design maps
and tuning formulas are developed not only for the case of infinite structure, but also for the finite case, highlighting the
role of the number of unit cells and that of resonances in the attenuation zones. Among the possible tuning strategies of
local resonators, it is shown that the mutual influence between elastic and electric parameters is able to produce a wider
attenuation zone, bridging Bragg scattering band gaps thanks to the effect of local resonators. The analytical findings
of this paper are validated with numerical results in an example application.

I. INTRODUCTION

A periodic structure consists of a number of identical struc-
tural components (called unit cells) which are joined together
end-to-end and/or side-by-side to shape the whole structure.
This geometry allows creating frequency intervals in which
an incident wave is not transmitted, broadly known as band
gaps. Thanks to this dynamic property, they have raised
a considerable interest in several research fields like struc-
tural vibrations and acoustics1,2, phononics3–5, photonics6,
phoXonics7,8 and electron or plasma waves9,10. In the con-
text of structural vibrations, a band gap is caused by a num-
ber of different phenomena. Bragg scattering was the first
to be analyzed11: when waves encounter a periodic change
in the propagating medium, diffraction takes place provided
that the spatial periodicity of the perturbation is close to a
multiple of the wavelength12–15. Another cause of band gaps
are localized resonant structures. These typically show up a
band gap at a wavelength well below the Bragg scattering one
(i.e., the so-called subwavelength regime). There is a consis-
tent literature about purely mechanical local resonant struc-
tures (see for example16–19), but also a significant number
of publications deals with smart materials used as local res-
onators (see20–22). Other techniques rely on mode coupling23,
hybridization4,24 or time-modulation25,26. To further enhance
properties of periodic media, recent studies consider the co-
existence of Bragg scattering and local resonators27–37. In
particular, Kaina et al.29, Yuan et al.31, Krushynska et al.35

and Moscatelli et al.37 report that, in different applications,
the local resonators can widen and strengthen the Bragg scat-
tering band gaps.

In mono-dimensional periodic structures wave propaga-
tion occurs along a single direction. The degree of cou-
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pling is equivalent to half the number of boundary condi-
tions needed for solving the wave partial differential equa-
tion of the medium38. In this work, mono-coupled periodic
structures are considered, in particular the paper refers to the
case of longitudinal wave propagation in rods39,40. However,
several of the obtained concepts and formulas could also be
applied to other physical models, such as transversal vibra-
tions in strings38, surface acoustic wave mono-dimensional
devices41,42, torsional vibrations of shafts43,44 and transversal
vibrations in periodically supported beams45. In this study, the
Bragg scattering is generated by an impedance mismatch be-
tween two different elements that make up the unit cell, while
local resonators are implemented with piezoelectric inserts
shunted with a resonating electrical circuit46–48. The most
common applications exploit local resonators to create a low
frequency band gap, before the occurrence of Bragg scatter-
ing. However, these literature models of shunted piezoelectric
inserts or patches are no longer valid at the frequencies where
Bragg scattering takes place49, i.e., where the local resonators
can interact with Bragg scattering band gaps.

Mono-dimensional, linear periodic structures present the
analytical advantage of having a closed form solution of the
wave propagation problem. Among the large variety of meth-
ods developed for the study of periodic structures2,13, the
transfer matrix method50–52 is chosen in this paper, since
it allows to describe the wave propagation behavior of the
whole structure just based on the characteristics of the unit
cell. Indeed, the transfer matrix links the state vector of
subsequent unit cells and it is a symplectic linear map, a
property that has several implications among which a signifi-
cant simplification of computations45,53,54. To determine how
waves propagate, it is sufficient to study the eigenvalues of the
transfer matrix (analogue to the imposition of Bloch-Floquet
conditions55,56), thus the attention is focused on the transfer
matrix invariants57,58. These latter depend on a number of
non-dimensional parameters, therefore it is possible plot the
system behavior in design maps presenting a clear understand-
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ing of the physical phenomena involved.
The typical design of periodic structures is based on the

analysis of the wave propagation behavior. However, this dy-
namics is valid for an infinite medium, while in the finite sys-
tems are characterized by standing waves. Analytical relations
for propagation in finite structures would be notably useful to
investigate how the number of unit cells influences the system
behavior59–61. This is influence is not limited to the attenu-
ation level in band gaps, but also on resonances, that depend
on boundary conditions and topological configurations of the
periodic structure.

This paper studies the interactions between Bragg scatter-
ing and local resonators band gaps in mono-coupled periodic
structures. Based on the transfer matrix method, design maps
and tuning guidelines via analytic formulas are derived both
for the infinite and finite propagating media, which is uncom-
mon in available literature results. Specifically, the transmis-
sibility ratio is introduced and exploited for characterizing fi-
nite periodic systems. Here, the structural design needs to
consider not only band gaps, but also the number of unit cells
and potential resonances that may break the attenuation zones
of band gaps. Local electromechanical resonators are intro-
duced via a new modeling of piezoelectric elements, which is
valid for frequencies above for subwavelength regime. There
are three possibilities for tuning the intrinsic band gap of local
resonators: before the Bragg scattering band gaps (as in tra-
ditional metamaterials), inside a band gap in order to break it
or in between two Bragg scattering band gaps. In this latter
case, it is possible to make a bridge between two Bragg scat-
tering band gaps through the resonators effect for generating
an extra wide attenuation zone. With respect to available liter-
ature results on interactions between Bragg and local resonant
band gaps, we develop a detailed parametric analysis, and we
highlight the role of metadamping.

The article is developed in four main sections. First, the
dynamics of mono-coupled periodic structures is summarized
both for infinite and finite systems. In Sec. III, we discuss
structures whose band gaps are generated via Bragg scatter-
ing only, providing design maps and close-form tuning for-
mulas. Section IV introduces resonant shunted piezoelectric
inserts along the periodic structure and analyzes the coupling
of Bragg scattering and local resonator band gaps. The last
section presents a numerical application of the bridging effect
of local resonators on two Bragg scattering band gaps, which
validates the analytical tuning predictions presented in this pa-
per.

II. DYNAMICS OF MONO-COUPLED PERIODIC
STRUCTURES

The typical mono-coupled periodic structure and its unit
cell are illustrated in Fig. 1, with reference to the case of
periodic rods. The linear, longitudinal wave propagation, at
frequency ω , in a homogeneous rod element is governed by
the wave equation in the frequency domain62

d2u
dx2 +

ω2

cel
u = 0, (1)

1 2. . . .

Unit Cell

Figure 1. Representation of the periodic rod and the selection of the
unit cell.

where u(x) is the displacement field, cel =
√

Yel/ρel the wave
speed for the rod element, ρel its density and Yel its Young’s
modulus. The wavenumber κel is defined as ω/cel , while Ael
indicates the cross section. A unit cell, marking the spatial
periodicity of the structure, is made-up by stacking different
rod elements and its length is denoted lc. Using the notation
f for the longitudinal force, the two-dimensional state vector
y(n) = [u(nlc) f (nlc)]T describes displacement and force at a
location in the n-th unit cell. State vectors of subsequent unit
cells are related by the transfer matrix [T (ω)] as

y(n+1) = [T (ω)]y(n). (2)

The transfer matrix of the unit cell, which is assembled from
the transfer matrices of single elements, plays a key role in
uncovering the dynamics of the structure both in the infi-
nite and in the finite cases. A detailed derivation for the rod
case is presented in Appendix A. By definition, it must be
symplectic53,54, which implies that det([T (ω)]) = 1 always
and that any eigenvalue appears in couple with its reciprocal.
Thus, λi is an eigenvalue of [T (ω)], also 1/λi is an eigenvalue
of [T (ω)]. In the case of mono-coupled systems (2×2 trans-
fer matrix), only one couple exists. Note that, even though the
transfer matrix changes for different unit cell discretizations
of the structure with fixed spatial periodicity lc, its eigenval-
ues are invariant as discussed in Appendix A.

Wave propagation in the infinite medium can be studied via
Floquet-Bloch conditions11,55,63, i.e., imposing that y(n+1) =

λy(n), where λ = eµ is the so-called Floquet multiplier and µ

is known as the propagation constant. The Floquet-Bloch con-
dition states that Floquet multipliers coincide with the eigen-
values of the transfer matrix, i.e., [T (ω)]y = λy. Therefore,
if µ is purely imaginary, then |λ | = 1 and a wave can freely
propagate (pass band). If µ has a real part, |λ | 6= 1, thus a
wave is attenuated when |λ | < 1 (stop band or band gap) or
amplified when |λ |> 1 (in non-active structures, this does not
happen due to energy conservation). As pointed out by56, for
a m-coupled system there are m couples of waves, for which
λ ↔−µ and 1/λ ↔+µ are forward and backward propagat-
ing waves respectively.

In the case of longitudinal wave propagation, a single type
of wave exists m = 1, whose dispersion relation reads39,45,64

µ = µ(ω) = acosh
(

Tr([T (ω)])

2

)
. (3)

Equation (3) is the fundamental equation to study wave prop-
agation in mono-coupled structures and it is exploited in the
upcoming sections. The dynamical behavior is only depen-
dent on the trace of the transfer matrix, its first invariant.
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Figure 2. Representation of wave propagation in a finite periodic rod.

A finite periodic structure requires a different approach, but
the transfer matrix [T (ω)] is still the key ingredient. The gen-
eral behavior of a finite periodic structure can be analyzed by
adopting the configuration shown in Fig. 2, which is typical
in optics65. Here, a finite periodic rod made up by N cells
is inserted in an infinite and continuous rod made of another
material (referred as external medium).

Generally speaking, when an incident wave Ui, propagat-
ing from left to right, arrives at the boundary of a periodic
structure, part of this wave is reflected back (Ur), while the
remaining part is transmitted through the periodic structure
(Ut ). Now, it is possible to introduce the transmissibility ratio
t as the ratio between the transmitted wave over the incident
one (there is also a reflection ratio r, i.e., the ratio between re-
flected and incident waves). Reasonably, t is somehow related
to the pass/stop band nature of the periodic structure. If µ is
a relevant indicator for wave propagation in infinite periodic
structures, in finite periodic structures of N unit cells there is
a similar quantity named α , the attenuation coefficient (per
element), that is related to t as

|t|= e−αN , α =− log(|t|)/N. (4)

The spectral analysis of the waves propagating in the external
medium gives

ui(x) =Uie− jκex , ur(x) =Ure+ jκex

ut(x) =Ute− jκe(x−Nlc),
(5)

where Ui, Ur and Ut are complex values, j is the imaginary
unit and the subscript e indicates the properties of the external
material. By using the notation

[T (ω)] =

[
t11 t12
t21 t22

]
, (6)

and indicating with ze = YeAe/ce the impedance of the exter-
nal medium, the next result characterizes the transmissibility
ratio.

Proposition II.1. The transmissibility ratio t =Ut/Ui is char-
acterized by the following formula

t =
2[

−(t11− t22)+ j
(

ωzet12 +
t21

ωze

)]
sinh(Nµ)

sinh(µ)

. (7)

This result is proven in Appendix B. Here, it is also shown
that, for an infinite number of elements, the attenuation per
element α converges to

lim
N→∞

α = lim
N→∞

− log |t|
N

= Re(µ), (8)

as expected. Moreover, a closed form expression exists also
for the reflection ratio r = Ur/Ui (see Appendix B). The for-
mula in Eq. (7) replaces the dispersion relation in Eq. (3) to
analyze wave propagation in finite periodic media and the de-
pendence on the number of unit cells can be clearly identified.

III. DESIGN OF BRAGG BAND GAPS

This section aims to study the case of the periodic rod
whose band gaps are generated via Bragg scattering only. This
periodic rod and the selected unit cell are represented in Fig.
1. This latter is made up by two different rod elements and it
is selected in an asymmetric fashion.

A. Infinite structure

The transfer matrix for a rod element considering a com-
pressive longitudinal force reads

[Tel,k] =

 cos(κklk)
sin(κklk)

zkω

−zkω sin(κklk) cos(κklk)

 (9)

where zk = YkAk/ck = Ak
√

Ykρk is the rod element character-
istic impedance for k = 1,2, as shown in Appendix A 1. The
unit cell in Fig. 1 is made up by two different rod elements,
therefore the whole transfer matrix for the unit cell is

[T ] = [Tel,2][Tel,1] (10)

where [Tel,1] is the transfer matrix of the first part (at the left
side of the unit cell) and [Tel,2] the transfer matrix of the sec-
ond part (at the right side). The trace of the transfer matrix
Tr([T (ω)]) = I1, i.e., its first invariant, takes the form

I1 = 2cos(κ1l1)cos(κ2l2)+

−sin(κ1l1) sin(κ2l2)
(

z2

z1
+

z1

z2

)
.

(11)

Being I1 always real in this case, a simple analysis of Eq.
(3) shows that the propagation constant is purely imaginary
if −2≤ I1 ≤ 2. Outside this interval µ has a real part, so that
there exists a band gap and no wave can propagate along the
structure. In case of undamped mono-coupled systems, only
pure pass ( Re(µ) = 0 ) and stop bands ( Re(µ) 6= 0 ) exist.

As pointed out by Ref. 57, it is convenient to express the
invariants as a function of a set of non-dimensional parame-
ters to obtain a useful tool for periodic structure design. The
simplest set for the periodic rod case is

ζ =
z2

z1
=

A2
√

Y2 ρ2

A1
√

Y1 ρ1
, Λ =

κ2l2
κ1l1

=
c1l2
c2l1

, Ω =
ωl1
c1

, (12)

where ζ is the ratio of impedances (representing the inter-
nal impedance mismatch), Λ is a ratio between lengths and
propagation speeds, Ω is the non-dimensional frequency. Fur-
thermore,

ωm,k = mπ
ck

lk
, fm,k =

m
2

ck

lk
, k = 1,2, m ∈ N (13)
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Figure 3. Non-dimensional maps obtained by the invariant equation. Color-scale represents the level of attenuation, quantified using the
logarithm of the real part of the propagation constant. a) Ω−ζ map with Λ = 3; b) Ω−Λ map with ζ = 4; c) ζ −Λ map with Ω = π/2.

Figure 4. Propagation constant µ and first invariant I1 trends in Ω for
ζ = 4 and Λ = 3. In the plot of I1, the two red dotted lines show the
values ±2.

are the natural frequencies either for free-free or clamped-
clamped boundary conditions for element 1 and element 2.
When Ω is equal to mπ we are in coincidence of a natural
frequency of element 1. Instead, Λ is the ratio between corre-
spondent natural frequencies of element 1 and 2 respectively.

With some substitutions and manipulations, the first invari-
ant can be written as

I1 = 2cos(Ω)cos(ΛΩ)− sin(Ω)sin(ΛΩ)

(
ζ +

1
ζ

)

=

[
1+
(

ζ

2
+

1
2ζ

)]
cos[Ω(1+Λ)]+

+

[
1−
(

ζ

2
+

1
2ζ

)]
cos[Ω(1−Λ)],

(14)

thus I1 = I1(ζ ,Λ,Ω). Figure 4 shows the dispersion plot for a
unit cell having ζ = 4 and Λ = 3.

Figure 5. Ω−Λ map at ζ = 4 with the approximated band gap center
locations and, in the small upper right plot, approximated first band
gap location Ωc (m = 1, dotted line) against the actual ones for dif-
ferent internal impedance mismatch values indicated by the colored
lines.

Fixing one of the non-dimensional parameters, it is possible
to plot the design maps in Fig. 3 that represent how pass and
stop bands change as a function of the other non-dimensional
parameters. While deep blue represents pass band, the color
scale shows the wave attenuation in logarithmic values. Fo-
cusing now on the Ω−ζ map of Fig. 3a, it holds that:

- since ζ appears in the trace as ζ̂ (ζ ) = ζ +1/ζ , it is possible
to analyze just the interval 0 < ζ < 1 or the one ζ > 1 since
the functions ζ̂ (ζ ) and ζ̂ (1/ζ ) have the same images. As
ζ departs from 1 the attenuation level and the width of the
band gaps increases, while no stop band is present for ζ = 1;

- if Λ ∈ Q, then the I1 is a periodic function in Ω and con-
sequently pass/stop bands will have a periodic trend along
frequencies, cf. Fig. 4 where the period is π;

- a band gap attenuation is symmetric in frequency with re-
spect to its center where there is the maximum of the real
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Figure 6. a) Transmissibility ratio in dB and b) attenuation per element α and real part of the propagation constant µ plots with ζ = 4 and
Λ = 3 for different numbers of unit cells: blue line, N = 3; orange, N = 5; yellow, N = 10; purple, N = 50 for plot b).

part. The frequency locations of the band gaps centers seem
independent from the internal impedance mismatch ζ .

On the other hand, the Ω−Λ map of Fig. 3b shows that:

- the band gap center is strongly affected by the Λ parameter,
while this latter has only a modest influence on the ampli-
tude level;

- the number of band gaps in a π period of Ω is equal to the
upper rounded integer of Λ;

- The frequencies at which Ω is a multiple of π are always
pass ones. From the physic point of view, it means that a
wave that passes through element 1 keeps the same ampli-
tude with the same phase or opposite, so element 1 does
not contribute to the wave propagation at these frequencies.
Analogue considerations hold when ΛΩ is a multiple of π .

Figure 3c shows the influence of both mechanical parameters
at a fixed Ω, thus providing information about the robustness
of a specific frequency but losing the notion about bandwidth.

From a design point of view, it is valuable to have an ana-
lytical formula for the band gap tuning. Accurate information
may be derived via numerical studies, but the m-th band gap
central frequency Ωc is approximated as

Ωc =
mπ

1+Λ
. (15)

The exact derivation of this result is reported in Appendix C
and its predictions are shown in Fig. 5. Here, the Ω−Λ map
has been integrated with the approximated band gap center
locations and, in the inset, the approximated first band gap
location Ωc (m = 1, dotted line) is plotted against the actual
ones, for some internal impedance mismatch values.

B. Finite structure

For the unit cell selected in Sec. III A in the finite setting
of Sec. II and for an external medium with the same material
properties of element 1 (i.e., ze = z1), the transmissibility ratio
t takes the form

t =− 2 j
UN−1h

e− jΩ,

h =

(
1
ζ
−ζ

)
sin(ΛΩ), UN−1 =

sinh(Nµ)

sinh(µ)
.

(16)

With respect to the non-dimensional parameters affecting
wave propagation, the transmissibility ratio has the addi-
tional dependence on the number of unit cells N, i.e., t =
t(Ω,ζ ,Λ,N). In Fig. 6, the quantities |t| and α are reported
for a periodic structure made up by unit cells having ζ = 4,
Λ = 3 and ze = z1. Different colors show different number of
unit cells.

First, it is clear from Fig. 6a that the number of elements
strongly affects the response of the system, both in terms of
resonances and of band gap attenuation. From a design point
of view, it is therefore possible to define a certain threshold
value, a desired reduction in the response, to properly choose
the necessary number of unit cells that allows to obtain a de-
sired attenuation in the stop band.

Then, the term UN−1(µ) is a Chebyshev polynomial of
second kind66. This function does not have zeros or turn-
ing points in the domain range [1,∞) and the same applies
to (−∞,−1], while it has N− 1 zeros in the interval (−1,1).
Therefore, when Tr([T ]) lays between (−2,2) there is a pass
band, and each pass band is characterized by N − 1 natural
frequencies. On the other hand, h is responsible for the re-
maining countable infinity of resonances, matching the classic
vibration theory. Furthermore, the term h also depends on the
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Figure 7. Non-dimensional maps for the finite periodic structure using the transmissibility ratio for a threshold attenuation level of -40 dB.
Colors indicate the behavior for different number of unit cells: a) Ω− ζ map with Λ = 3; b) Ω−Λ map with ζ = 4; c) ζ −Λ map with
Ω = π/2.

external medium and may also interfere with the Bragg scat-
tering, setting a resonance peak in between a band gap. This
case has to be handled with care, as reported in Appendix D.

The design maps computed for the infinite system can be
extended for the finite case. In order to evaluate how a stop
band evolves with the variation of a non-dimensional param-
eter, it is necessary to fix a desired attenuation level (a thresh-
old). Figure 7 is obtained for a desired attenuation level of
10−2 or -40 dB. The diagrams show pass (in blue) and stop
(with various colors depending on the number N of unit cells)
bands as function of the considered parameters. It can be no-
ticed that the greater the impedance mismatch, the lower the
number of elements necessary to obtain the desired attenua-
tion level. As the band gaps do not change, the formula de-
rived for the location of a band gap center is still valid also in
the finite case.

To fully clear the design of a finite periodic system, the
application-dependent, finite structural response needs also to
be checked and the transfer matrix can be again be exploited
for analytical computations, as reported in Appendix D. For
instance, by imposing forced-free boundary conditions to the
finite periodic rod of Fig. 2, a frequency response function of
interest is the transmittance tr, i.e., the ratio between the dis-
placement of one side and the applied force of the other side.
In Fig. 8 the modulus of the transmittance t̄r is reported in
its non-dimensional form for a periodic structure made up by
unit cells having ζ = 4 and Λ = 3 where different colors show
the behavior different number of unit cells. Other than the dif-
ference in natural frequencies and the increasing attenuation
as the number of unit cells grows, the presence of resonances
that breaks the band gaps can be noticed. These resonances,
actually corresponding to natural frequencies of the last unit
cell, can either ruin band gap attenuation, or exploited to re-
tain only a precise frequency within a stop band.

IV. SHUNTED PIEZOELECTRIC PERIODIC ROD

The presence of a shunted piezoelectric element (often ab-
breviated with piezo or PZT) in a unit cell of a periodic struc-

Figure 8. Non-dimensional transmittance modulus of the forced-free
finite periodic rod with ζ = 4 and Λ = 3 for different numbers of unit
cells: blue line, N = 3; orange, N = 5; yellow, N = 10.

ture is analyzed in this section. First, the modeling of the
piezoelectric domain is presented. Shunted piezoelectric ele-
ments are often used to generate a band gap before the appear-
ance of Bragg scattering, but in our formulation the model is
substantially renewed since we aim to investigate what hap-
pens at higher frequencies49. Indeed, the deformation of
the element is supposed to be constant in the subwavelength
regime, while at higher frequencies this approximation is not
valid anymore. Subsequently, the shunted piezoelectric rod
element is inserted in the periodic structure of Sec. III, hence
driving the analysis on the coexistence of Bragg scattering and
local resonator band gaps.

A. Element modeling

To obtain the transfer matrix for the R−L shunted piezo-
electric bar element shown in Fig. 9a, it is necessary to cou-
ple the mechanical and electrical dynamic equations with the
piezoelectric constitutive laws. Assuming to directly be in the
frequency domain, for what regards mechanics, the infinitesi-
mal equilibrium states62

d f
dx

=−ρAω
2u, (17)

with the usual meaning of the parameters. As typically
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Figure 9. a) Representation of the Shunted Piezoelectric Rod Ele-
ment; b) Equivalent lumped electrical circuit.

done in literature46,47,67,68, the electrical circuit is modeled in
the lumped parameters fashion since the characteristic wave-
length of mechanical vibration is much shorter than the elec-
tric field wavelength in piezoelectric materials. Thus, the
equation for the electric shunt circuit represented in Fig. 9b is

∆vc =−ZSic → ∆vc =− jωZSqc, (18)

where ic is the circuit current, qc the electrical charge on
the electrodes surfaces, ZS = RS + jωLS the circuit electric
impedance (RS resistance and LS inductance) and vc the po-
tential difference between them. Referring to69 for the mod-
eling of a 1D piezoelectric element and assuming a pure 33
operating mode (the subscript will be omitted in formulas),
the linear constitutive law isS =

T
Y E +dE,

D = dT + εT E,
or

T = Y DS−gD,

E =−gS+
1
εS D,

(19)

where T is the applied stress, S the strain, E the electric field,
D the electrical displacement, Y E and Y D the Young’s moduli
in short circuit condition (E = 0) and open circuit condition
(D = 0) respectively, εT and εS the electric permittivities at
T = 0 (stress free condition) and at S = 0 (strain free condi-
tion) respectively, d the piezoelectric strain coefficient and g
the piezoelectric stress coefficient. The piezoelectric coupling
coefficient k (or k33), which quantifies the electromechanical
energy conversion, satisfies

k2 = d2 Y E

εT = g2 εS

Y D ,
Y E = Y D(1− k2),
εS = εT (1− k2).

(20)

Then, it is necessary to integrate the constitutive law in the
piezoelectric material volume. First, it is recalled that

S =
du
dx

, f =
∫

A
T dA, E =

dvc

dx
, qc =

∫
A

DdA, (21)

and, assuming that S and E are uniform along the cross section
A (i.e., electrodes surface), Eq. (19) is integrated in the cross
section resulting in

f = Y DA
du
dx
−gqc,

dvc

dx
=−g

du
dx

+
1

εSA
qc.

(22)

The second equation of Eq. (22) has to be integrated in the
longitudinal direction as well∫ l

0

dvc

dx
dx =−g

∫ l

0

du
dx

dx+
1

εSA

∫ l

0
qcdx, (23)

while for the two first integrals the result is trivial, the charge
needs a further hypothesis: no free charge is assumed inside
the piezoelectric material, so Gauss’s law states that divD= 0.
Since that no polarization, field or charge is present in the
transversal directions, it is possible to get that (usual hypothe-
ses of mono-dimensional modeling70)

∂D
∂y

=
∂D
∂ z

= 0 → ∂D
∂x

= 0 → dq
dx

= 0, (24)

and the charge is thus constant along the x direction. So, Eq.
(23) becomes

CS
∆vc−qc =−gCS (u(l)−u(0)) , (25)

where CS = εSA/l is the strain free piezoelectric capacitance.
Note that Eq. (25) represents the PZT highlighted area of the
electric circuit illustrated in Fig. 9b. After using here Eq. (18)
and isolating qc, the constitutive law of the R−L shunted PZT
bar element takes the form

f = Y DA
du
dx
− k2Y DA

G(ω)

u(l)−u(0)
l

, ω
2
LC,S =

1
LSCS ,

G(ω) = 1+2ξ j
ω

ωLC,S
− ω2

ω2
LC,S

, ξ =
RSCS

2
ωLC,S,

(26)

where ωLC,S is the electrical shunting frequency and ξ quanti-
fies the electrical damping ratio. The circuit influence depends
on the difference of the displacements of the two electrodes
that is actually what the lumped parameter circuit can sense.
Thus, when the displacements of the electrodes are in phase
with the same amplitude, the shunt does not affect the dynam-
ics, while if they are out of phase, its effect is maximum.

Typically, R−L shunted PZT elements are used in the sub-
wavelength regime46,49,68, for which

u(l)−u(0)
l

≈ du
dx
→ f = Y DA

(
1− k2

G(ω)

)
du
dx

, (27)

where the piezoelectric effect is enclosed into the Young’s
modulus. Approaching the first Bragg scattering band gap, the
subwavelength hypothesis is not valid, so the force expression
of Eq. (26) is adopted instead of that in Eq. (27).

By further analyzing the circuit equation (18) and the func-
tion G(ω), three main frequency regions can be distinguished
for the behavior of the R−L shunted PZT:

- ω→ 0: short circuit behavior. Indeed, from the circuit equa-
tion, the electrical field is almost null here and the shunting
circuit is practically a short circuit. The piezo elastic modu-
lus can be approximated with Y E ;

- ω → ∞: open circuit behavior. Here, G(ω) tends to infinity
as well and the charge is basically null. So, the piezo elastic
modulus reveals to be Y D;
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a) b) c)

Figure 10. Dispersion plot of the R−L shunted PZT periodic structure with ζ = 0.3, Λ = 0.5 and k = 0.5: a) Tuning A, ΩLC,S = 1; b) Tuning
B, ΩLC,S = 2.3; c) Tuning C, ΩLC,S = π . The blue line is for ξ = 0; the orange one for ξ = 0.01, the yellow one for ξ = 0.10, the black dashed
one illustrates the short circuit response (SC) and the black dotted line the open circuit one (OC).

Figure 11. Non-dimensional Ω−ΩLC,S map where color-scale rep-
resents the level of attenuation, quantified using the logarithm of the
real part of the propagation constant. The other non-dimensional pa-
rameters are selected as follows: k = 0.5, ζ = 0.3, Λ= 0.5 and ξ = 0.

- ω → ωLC,S: resonant zone. Considering ξ = 0, G(ω) tends
to 0 and provides a resonating trend to the piezo dynamic
stiffness. In particular, an attenuation zone rises up and it is
called intrinsic band gap since it is a property of the material
and it is independent on Bragg scattering or other periodic
behaviors. This phenomenon has its physical motivation on
the inductor: near the resonance frequency the inductor is
effectively accumulating the energy coming from the me-
chanical domain. This argument is still valid also in pres-
ence of a resistance which introduces energy dissipation in
the system reducing the attenuation peak and spreading the
resonator contribution in frequency.

Since the electric term in Eq. (26) does not depend on x, the
differentiation here brings to

d f
dx

= Y DA
d2u
dx2 (28)

that, coupled with Eq. (17), gives again Eq. (1) with c =

cD =
√

Y D/ρ . Therefore, following the modeling steps of
Appendix A but considering Eq. (26) in the context of Eq.
(A2), the dynamic stiffness matrix here is found to have an
additional shunting term with respect to its purely mechanical
one [Kel(ω)], i.e.,

[KPZT (ω)] = [Kel(ω)]+
Y DA

l
k2

G(ω)

[
+1 −1
−1 +1

]
, (29)

and, using Eq. (A5) it is possible to compute the transfer one.

B. Coupling Bragg scattering with electromechanical
resonators

The reference configuration is depicted in Fig. 1 where the
medium 1 is the shunted PZT element. Using the notation

Ω = κD
1 l1 =

ωl1
cD

1
= ωl1

√
ρ1

Y D
1
, z1 = A1

√
ED

1 ρ1, (30)

the transfer matrix of the shunted PZT medium becomes

[Tel,1] =

 c̃1(Ω)
s̃1(Ω)

z1ω

−z1ω
1− c̃2

1(Ω)

s̃1(Ω)
c̃1(Ω)

 , (31)

where

c̃1(Ω) =
Ωcos(Ω)G(Ω)− k2 sin(Ω)

ΩG(Ω)− k2 sin(Ω)
,

s̃1(Ω) =
Ωsin(Ω)G(Ω)

ΩG(Ω)− k2 sin(Ω)
,

G(Ω) = 1+ j
2ξ Ω

ΩLC,S
− Ω2

Ω2
LC,S

, ΩLC,S =
lωLC,S

cD .

(32)
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a) b) c)

Figure 12. Non-dimensional maps obtained by the invariant equation. Color-scale represents the level of attenuation, quantified using the
logarithm of the real part of the propagation constant. All the maps has k = 0.5 and ξ = 0.1: a) Ω− ζ map with ΩLC,S = π and Λ = 0.5; b)
Ω−Λ map with ΩLC,S = π and ζ = 0.3; d) Ω−ΩLC,S map with ζ = 0.3 and Λ = 0.5.

The trace of the full transfer matrix [T ] = [Tel,2][Tel,1] reads

I1 = 2cos(ΛΩ)
Ωcos(Ω)G(Ω)− k2 sin(Ω)

ΩG(Ω)− k2 sin(Ω)
+

−ζ sin(ΛΩ)
Ωsin(Ω)G(Ω)

ΩG(Ω)− k2 sin(Ω)
+

− 1
ζ

sin(ΛΩ)
Ωsin(Ω)G(Ω)−2k2[1− cos(Ω)]

ΩG(Ω)− k2 sin(Ω)
,

(33)

and the propagation constant is function of six non-
dimensional parameters, i.e., µ = µ(ζ ,Λ,Ω,ΩLC,S,ξ ,k).

The shunting resonance frequency ΩLC,S can be tuned be-
fore, inside or eventually after the first Bragg band gap as
shown in Figures 10 and 11. This latter is a map with the
same meaning of those in Sec. III A where the two variables
are Ω and ΩLC,S and the other parameters are fixed as k = 0.5,
ζ = 0.3, Λ = 0.5 and ξ = 0.

The first case, called Tuning A and shown in in Fig. 10a,
regards the structure as a pure locally resonant metamaterial.
Here, the shunting frequency is tuned before the first Bragg
scattering band gap ΩLC,S = 1 and the plot shows the response
for several damping values ξ = 0, 0.01, 0.1. The band gap
due to the resonator provides very strong attenuation for the
undamped case in a narrow bandwidth. By analyzing the sub-
wavelength limit of Eq. (33), one obtains that the frequency at
which the maximum attenuation occurs is well approximated
by the electrical shunting frequency computed with the stress
free piezoelectric capacitance (T = 0) ΩLC,T = ΩLC,S

√
1− k2.

However, since the displacements of the PZT electrodes ap-
proaches an in-phase condition for low frequencies, the PZT
influence is intrinsically limited, as shown in Fig. 12. Addi-
tionally, attenuation deteriorates as damping grows, with lim-
ited advantages in terms of bandwidth, cf. Figs. 10a, 12c. To
overcome these two drawbacks, it is possible to increase the
impedance mismatch or the electromechanical coupling.

The other two strategies are based on the fact that the in-
trinsic, local electric band gap of the piezoelectric resonator
can be coupled with the pure Bragg scattering of the periodic

structures. The goal of the second strategy, called Tuning B
and shown in Fig. 10b, is not to provide attenuation: by tun-
ing the resonator into the first band gap, it is able to generate
a pass band breaking the band gap. In this case, the shunt-
ing frequency is tuned close to the center of the first Bragg
scattering band gap ΩLC,S = 2.3. If no shunt circuit is con-
nected (i.e., black dashed line, short circuit condition, and the
black dotted line, open circuit), band gaps are generated with
Bragg scattering. When the tuning circuit is active with no
damping, the first band gaps is divided in two and a pass band
arises. However, as for Tuning A, in case of a high level of
damping (e.g., ξ = 0.1) this effect does not show up anymore
since damping spreads and smooth the resonator contribution
in frequency.

Instead, Tuning C, whose propagation constant are given in
Fig. 10c, is able to generate an extended attenuation region. It
shunts at ΩLC,S = π , which is the frequency at which the PZT
electrodes are exactly out of phase, hence the shunting reso-
nance is optimally coupled to the system. In the undamped
case, a very strong attenuation peak arises in between two
band gaps as shown in Figs. 10c and 12. Then, raising the
level of damping (ξ = 0.01 orange line; ξ = 0.1 yellow line),
the attenuation peak smooths out, but again the resonator in-
fluence is spread on nearby frequencies. This results in linking
two subsequent Bragg scattering band gaps in order to create
a single and wider attenuation zone.

These three are the possibilities for the coexistence of
Bragg scattering and a clearer understanding is provided with
the maps in Figures 11 and 12 that illustrate how the real part
of the propagation constant modifies in frequency when a cer-
tain parameter varies (analogue of those in Sec. III A). Fig-
ures 11 and 12c show the different tuning possibilities for two
damping values, ξ = 0, 0.1 respectively, and with ζ = 0.3 and
Λ = 0.5. The three tuning strategies can be identified and ana-
lyzed here. Moreover, it is clear that the resonator influence is
strongly reduced at frequency multiples of 2π (electrodes in
phase), regardless of the tuning, while it is highly enhanced at
π plus multiples of 2π (electrodes in phase opposition). Con-
cerning this latter case, the maps of Figures 12a and b show
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a) b) c)

Figure 13. a) Transmissibility ratio in dB for the three tuning strategies with k = 0.5, ζ = 0.3, Λ = 0.5, ξ = 0.01 (Tuning A and B), ξ = 0.1
(Tuning C) and N = 5. b-c) non-dimensional Ω−ΩLC,T maps with ζ = 0.3, Λ = 0.5 and k = 0.5 for the finite periodic structure using the
transmissibility ratio for a threshold attenuation level of -40 dB. Colors indicate the behavior for different number of unit cells and ξ = 0.01 in
a) while ξ = 0.10 in b).

the effect of ζ and Λ for ΩLC,S = π and ξ = 0.1. In the first
one, the effect of the impedance mismatch can be observed
with Λ = 0.5: at low values of ζ the shunt is able to produce
the electromechanical effect while at high ones its influence
is strongly reduced, and the bridging of Bragg gaps does not
show up anymore. Instead, Fig. 12b shows the influence of
Λ at ζ = 0.3 and it can be noticed that the bridging of Bragg
gaps always happens, even involving more than two Bragg
band gaps. However, for increasing Λ, the bandwidth of the
attenuation zone decreases and the real part of µ tends to zero
for frequencies at which the second element contributes to
turn the electrodes displacements in phase opposition, cf. Eq.
33. Thus, this condition might be useful for having localized
resonances inside the wide attenuation zone provided by the
electromechanical band gap. On the other hand, if Λ < 1, the
bridging of Bragg gaps appears with its maximum extension
and without any break in its band width.

Table I resumes tuning guidelines obtained by our discus-
sion. Here, ωc,1,D = πcD

1 c2/(l1c2+ l2cD
1 ) refers to the center

of the first band gap computed via Eq. (15) and the needed
shunting inductance can be retrieved as in Eq. (26). It is im-
portant to remark for Tuning A and B strategies, the damping
effect is critical: the circuit resistance should be as low as
possible in order to generate a band gap or break a pass band.
Especially regarding Tuning A, this is one of the difficulties
of resonantly shunted piezoelectric metamaterials: to achieve
low frequencies, the inductance has to be increased and the
resistance may ruin the attenuation level. Note also that for
achieving high inductance level an active circuit is necessary
that often has also a considerable internal resistance. Thus,
high quality electrical circuits are necessary for these pur-
poses.

Introducing the number of unit cells, the transmissibility ra-
tio for the three tuning strategies is reported in Fig. 13a. The
configurations are the same of Fig. 10 for 5 unit cells. Here,
the deep narrow band attenuation of Tuning A at Ω = 0.87,
the small pass band of Tuning B centered at Ω = 1.9 and the
extended band gap (1.3 < Ω < 5) of Tuning C can be noticed.
Figures 13b and c show the effect of the number of unit cells N

Table I. Guidelines for different tuning strategies. The abbreviations
a.l/h.a.p. stand for as low/high as possible (cohently with design and
technical limitations) and n.i. for no importance of that parameter.

Parameter ζ Λ k ωLC,S ξ

Tuning A a.l.a.p. n.i. a.h.a.p. < ωc,1,D a.l.a.p.
Tuning B ” ” ” = ωc,1,D ”
Tuning C ” < 1 ” πcD

1 /l1 ≈ 10%

(as in Sec. III B) varying the frequency and the electrical tun-
ing frequency for two different values of damping. The colors
identifies where the attenuation level is lower than 10−2.

V. DESIGN OF A MULTI-CONFIGURATION PERIODIC
STRUCTURE

This section presents an application that aims to validate
the analytical prediction tools established in this paper. An
ultrasonic waveguiding system, to be found in medical, non-
destructive testing or imaging fields, is designed. More pre-
cisely, the proposed configuration consists of a tunable peri-
odic structure with shunted piezoelectric inserts that is able to
direct an incoming input force. Other types of non-reciprocal
periodic structures may be deployed for achieving similar per-
formances, but the current design can offer precious advan-
tages in terms of tunability.

The periodic structure is excited in the middle with an input
bandwidth approximately centered at 5 [MHz] and, thanks to
the switches in the electrical circuits, this signal can be devi-
ated to the right or left ends of the structure as shown in Fig.
14a. In the upcoming analysis, steady-states are only consid-
ered, and the latency time of switches may be safely neglected,
as it can be of the order of 10[ns], which is an order of magni-
tude less of the time-scale of this application. Wave directing
is achieved by exploiting the extended band gap generated by
Bragg scattering and local resonators, which is controlled via
the switches. By setting these switches on and off in the left



11

Semi-structure with 
RL Shunted PZTs 

Unit Cell
Semi-structure with 
Open Circuit PZTs 

Input  
Forcing Right Output 

Displacement
Left Output 

Displacement

Node On 
Pass

Node Off 
Stop

PZT

Si

1)

2)
a)

RS

LS

Switch

1 2 3 4 5 6 7 8
f [MHz]

10-15

10-10

10-5

|t r| [
m

/N
]

Open Circuit, 1)
Node On, 2)
Node Off, 2)

b)

Figure 14. a) Description of the structure with its configurations and b) its analytical frequency responses obtained with the Spectral Element
Method (SEM).
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Figure 15. Transmittances of the right and left ends of analytical and
numerical models (SEM, solid lines, FEM, dashed ones). With refer-
ence to Fig. 14a case 2), the blue lines refer to the right end displace-
ment, node on, while the orange ones to the left end displacements,
node off.

and right semi-structures respectively, Fig. 14a shows how
input force causes a displacement in the right end while the
left end one is attenuated. The yellow line illustrates the ref-
erence frequency response of either side with the whole struc-
ture having open shunt circuits (case 1). Instead, the other two
lines regard the system response when the switches are closed
in the left part: here, the pass band in the left end (blue line,
node off) is strongly attenuated while it is still present in the
right end response (orange line, node on). The signal may be
also directed to the left side (i.e., switches on in the right part,
off in the left one) and, eventually, the PZTs can be all shunted
to attenuated wave at both sides.

Due to the developments of this paper, the design phase is
pretty straightforward. First, the center of the second pass
band and the tuning value of the electrical frequency fLC,S are
both assumed to be 5 [MHz]. The materials are selected to be
PZT-5H (element 1) and silicon (element 2), whose proper-
ties are Y1 = 107 [GPa], ρ1 = 2330 [kg/m3], Y D

2 = 110 [GPa],
ρ2 = 7500 [kg/m3], k = 0.75 [−] and εS

rel = 1488 [−]. The
boundary conditions are supposed to be the free-free case
and the out of plane thickness is uniform and imposed to
be l1/2 for model consistency. The optimal configurations
can be selected through maps and the considerations previ-
ously illustrated. Targeting the Tuning C strategy of Sec.
IV with ζ < 1, Λ < 1 and ΩLC,S = π , optimization routines
on the desired system responses lead to select the follow-
ing other non-dimensional parameters: ζ = 0.3, Λ = 0.6,
ξ = 0.1 and N = 16. Therefore, the dimensional parameters
are found to be: A1 = 1.64 · 10−8 [m2], l1 = 3.84 · 10−4 [m],
A2 = 0.89 · 10−8 [m2], l2 = 4.07 · 10−4 [m], LS = 1.80 [mH]
( fLC,S = 5 [MHz]), RS = 11.3 [kΩ] and Ltot = 12.6 [mm].

The analytical results of this configuration are shown in Fig.
14b using the absolute value of the transmittance tr defined
as the ratio between input forcing and output displacement
(see also Appendix D). These predictions are corroborated
using a numerical 2D Finite Element Model (FEM), obtained
using COMSOL Multiphysics R© v5.2, Structural Mechanics
and AC/DC modules. In order to have coherent results with
the analytical model, the section mismatch has to be stiffened
using chamfers (as shown in Fig. 14a): in this way, even-
tual transverse modes do not appear in the frequency range
of interest. There is good sound between the models, except
for the high attenuating region where the local resonators are
tuned: here, other modes (e.g., Love waves) prevail on the
ones of quasi-longitudinal wave propagation, contributing to
highlight other resonance peaks and to slightly increase the
overall response. Fig. 15 provides the final results and com-
parison between the system model. With the same colors of
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Fig. 14b, solid lines represent the analytical SEM responses
while dashed lines the FEM ones using a dB scale. The mod-
est shifting of resonances is due to intrinsic modeling differ-
ences (e.g., FEM stiffening effects), but band gaps width and
attenuation are very consistent overall.

VI. CONCLUSIONS

This paper analyzes the interactions of Bragg scattering and
local resonators band gaps in mono-coupled infinite and finite
periodic structures. Bragg scattering occurs as a result of an
impedance mismatch in the unit cell, while local resonators
consist of resonant shunted piezoelectric inserts.

For the case of Bragg scattering, the invariants of the trans-
fer matrix allow to derive analytical tuning formulas and to
plot non-dimensional design maps, which highlight the influ-
ence of each design parameter in the behavior of band gaps.
In contrast with other literature studies, the dynamics of fi-
nite structures is also considered in detail. In this context,
the transmissibility ratio constitutes the finite counterpart of
the propagation constant in infinite media. Design criteria and
maps are extended to the finite case, highlighting the influence
of the number of unit cells and that of natural frequencies in
band gap attenuation.

Resonant shunted piezoelectric inserts are introduced with
a new modeling, which is valid also above the subwavelength
regime. This latter shows that the shunting behavior is domi-
nated, other than by electrical parameters, by the difference of
electrodes displacements. In particular, for frequency values
at which these electrodes are in phase opposition, the shunt
effect is maximum, while approaches zero for in phase elec-
trodes. Three tuning strategies for the local resonators are
identified and design maps allows a thorough understanding
of the effect of each parameter, including damping. Besides
the classic use as a metamaterial, the local resonator can break
a Bragg gap creating a pass band or, also thanks to electrical
damping, make a bridge between two Bragg gaps generated
an extended attenuation region.

A numerical application concludes the paper, showing and
validating the established analytical tools. An ultrasonic
waveguide that is able to direct an input frequency band is
designed, exploiting the tunability of the extended band gap
generated by the interaction of Bragg scattering and local elec-
tromechanical resonators.
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Figure 16. Representation of the rod element and sign conventions.

Appendix A: Transfer matrix for the rod element

1. Element modeling

For the rod element of length l illustrated in Fig. 16 the
solution of Eq. 1 is

u(x;ω) =C1e− jκx +C2e+ jκx, (A1)

where j2 = −1, ω = κc and the coefficients C1 and C2 have
to be determined by imposing the boundary conditions. Using
the sign conventions of Fig. 16, boundary displacements and
forces can be defined as{

uL = u(0,ω),

uR = u(L,ω),

{
fL =+YAu′(0;ω),

fR =−YAu′(l;ω),
(A2)

where A is the cross section area. By means of Eqs (A1,A2),
it is possible to obtain the dynamic stiffness matrix [Kel(ω)]
of the rod element that relates forces with displacements at the
boundaries of the element in the frequency domain{

fL
fR

}
= [Kel(ω)]

{
uL
uR

}
,

[Kel(ω)] =
−zω

sin(κl)

[
cos(κl) −1
−1 cos(κl)

]
=

[
kll klr
krl krr

] (A3)

where YAκ = zω and z = YA/c = A
√

Y ρ is the rod charac-
teristic impedance. Thus, [Kel(ω)] is a symmetric, real (since
there is no damping) and frequency dependent matrix, also
according to the formulations of Refs. 62 and 71.

To obtain the transfer matrix, a structure of rod elements
without external forcing at the nodal points13 is assumed. The
continuity and equilibrium conditions must hold between the
left displacement and force of element n+1 and the right ones
of element n,

u (n+1)
L = u (n)

R , f (n+1)
L =− f (n)

R , (A4)

and a state vector describing the left side is assumed y =

[uL fL]
T . Isolating these state variables from Eq. (A3),{

u (n+1)
L

f (n+1)
L

}
=

[
−k−1

lr kll k−1
lr

krrk−1
lr kll− krl −krrk−1

lr

]{
u (n)

L

f (n)
L

}
,

y(n+1) = [Tel(ω)]y(n)

(A5)
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the transfer matrix is obtained45, whose explicit form reads

[Tel(ω)] =

 cos(κl)
sin(κl)

zω
−zω sin(κl) cos(κl)

 . (A6)

Note that, in case the axial force is selected as tensile instead
of compressive, the cross-diagonal elements of [Tel, j] have op-
posite signs and all the elements of [Kel ] have opposite signs.

2. Invariance properties

The unit cell of a periodic structure with spatial periodicity
lc can be selected in different ways. In the bi-element case,
one can choose element one on the left side and element two
on the right one as shown in Fig. 1, or by stacking from left to
right half of element one, element two and the reamining half
of element one (i.e., a symmetric unit cell). Depending on this
topological choice, the transfer matrix changes, but the matrix
invariants remain the same.

Considering the state vectors y(n) = [u(nlc) f (nlc)]T and
y(n)s = [u(s+nlc) f (s+nlc)]T for s ∈ (0, lc), one has that

y(n+1) = [T (ω)]y(n), y(n+1)
s = [T̂ (ω)]y(n)s , (A7)

where [T (ω)] 6= [T̂ (ω)] in general. The two state vectors are
also related by the transfer matrix for the rod elements cover-
ing the length s

y(n)s = [Ts(ω)]y(n), (A8)

which holds for any positive or negative interger n due to
structural periodicity. Using Eq. (A8), one obtains

y(n+1) = [Ts(ω)]−1[T̂ (ω)][Ts(ω)]y(n), (A9)

which states that, being y(n) and s arbitrary, [T̂ (ω)] and [T (ω)]
are similar matrices, hence they have the same eigenvalues.

Appendix B: Proof of Proposition II.1

The following lemma is necessary for the proof of Proposi-
tion II.1. Interestingly, the same result is stated without formal
proof in Ref. 45.

Lemma B.1. Let [T ] ∈ R2×2 be such that det([T ]) = 1 and
indicate its eigenvalues with e±µ . Then, it holds that

[T ]N =
a
2

(
[T ]+ [T ]−1

)
+

b
2

(
[T ]− [T ]−1

)
, (B1)

where a = cosh(Nµ)/cosh(µ) and b = sinh(Nµ)/sinh(µ).

Proof. Firstly, let [T ] be a diagonalizable matrix. Hence,

[T ] = [S]−1[D][S],
[T ]−1 = [S]−1[D]−1[S],

(B2)

where [D] is a diagonal 2×2 matrix containing the eigenval-
ues of [T ] and [S] is a transformation matrix. Then,

[T ]N = [S]−1[D]N [S], (B3)

Using the notation ch = cosh(µ), sh = sinh(µ), chN =
cosh(Nµ) and shN = sinh(Nµ), one can find that

[T ]+ [T ]−1 = [S]−1
[

2ch 0
0 2ch

]
[S],

[T ]− [T ]−1 = [S]−1
[

2sh 0
0 −2sh

]
[S],

(B4)

that are valid also for the analogue case of [T ]N using chN and
shN instead of ch and sh respectively. By noting that

([T ]N +[T ]−N)+([T ]N− [T ]−N) =

= [S]−1
[

2(chN + shN) 0
0 2(chN− shN)

]
[S],

(B5)

it is possible to achieve

[T ]N = chN [S]−1
[

1 0
0 1

]
[S]+ shN [S]−1

[
1 0
0 −1

]
[S] . (B6)

Rearranging Eq. (B4) as

[S]−1 =
1

2ch
([T ]+ [T ]−1)[S]−1

[
1 0
0 1

]
,

[S]−1 =
1

2sh
([T ]− [T ]−1)[S]−1

[
1 0
0 −1

]
,

(B7)

and using these results in (B6), one obtains [T ]N as claimed. If
[T ] is not diagonalizable, then its eigenvalues are either equal
to +1 or −1 and [T ] is similar to a upper triangular Jordan
block. For this latter matrix, one can easily verify that the
same formula holds and hence, by similarity, Eq. (B1) is valid
for every [T ] ∈ R2×2 with unitary determinant.

Proof of Proposition II.1. For a sequence of N unit cells the
relationship between the state vectors is

y(Nlc) = [T (ω)]Ny(0). (B8)

The link between the state vector variables and the forces and
displacement of the periodic structure at the left and right
sides (ls and rs as shown in Fig. 2) is

u(Nlc) = urs, u(0) = uls,
f (Nlc) =− frs, f (0) = fls,{

urs
− frs

}
= [T (ω)]N

{
uls
fls

}
,

(B9)

where the negative is needed for structural equilibrium (see
also Appendix A). When coupling the periodic structure with
the external medium, continuity has to be guaranteed for the
displacements

urs = ut(Nlc) =Ut , uls = ui(0)+ur(0) =Ui +Ur, (B10)
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while equilibrium must be imposed with the axial force of the
external medium, for which it holds that fe = YeAedu/dx

frs + fe(Nlc) = 0 → frs = jωzeUt ,
fls + fe(0) = 0 → fls = jωze(Ui−Ur),

(B11)

Denoting tN,lm the elements (l-th row, m-th column) of the
matrix [T (ω)]N , from Eqs. (B9-B11) one can derive

Ut = (tN,11 + jωzetN,12)Ui +(tN,11− jωzetN,12)Ur,

Ut = (−tN,22 + j
tN,21

ωze
)Ui +(tN,22 + j

tN,21

ωze
)Ur,

(B12)
and the ratios t and r can be computed

r =
Ur

Ui
=

tN,11 + jωzetN,12− j
tN,21

ωze
+ tN,22

−tN,11 + jωzetN,12 + j
tN,21

ωze
+ tN,22

,

t =
Ut

Ui
=

2(tN,11tN,22− tN,12tN,21)

−tN,11 + jωzetN,12 + j
tN,21

ωze
+ tN,22

,

(B13)

It is worth noticing that the numerator of t in Eq. (B13) is
equal to the determinant of matrix [T (ω)]N .

Using Lemma B.1 and the formula

[T (ω)]−1 =

[
t22 −t12
−t21 t11

]
, (B14)

the N-th power of transfer matrix can be written as

[T (ω)]N =


TN +UN−1

t11− t22

2
UN−1t12

UN−1t21 TN−UN−1
t11− t22

2

 ,
(B15)

where TN and UN−1 depend on the first invariant of [T ] as

TN = TN

(
I1

2

)
= cosh(Nµ), cosh(µ) =

I1

2
,

UN−1 =UN−1

(
I1

2

)
=

sinh(Nµ)

sinh(µ)
,

(B16)

and they are respectively the Chebyshev polynomials66 of
first T and second U kind of degree N and N − 1. Since
det([T ]N) = det([T ])N = 1, the transmissibility ratio then
reads

t =
2[

−(t11− t22)+ j
(

ωzet12 +
t21

ωze

)]
sinh(Nµ)

sinh(µ)

(B17)

as claimed.

According to Eq. (4), the attenuation per element α takes
the form

α =
1
N

log
(∣∣∣∣ sinh(Nµ)

sinh(µ)

∣∣∣∣σe

)
,

σe =

√(
t11− t22

2

)2

+

(
ωzet12

2
+

t12

2ωze

)2

,

(B18)

for which it holds that

lim
N→∞

α = lim
N→∞

1
N

log
(∣∣∣∣ sinh(Nµ)

sinh(µ)

∣∣∣∣σe

)

= lim
N→∞

1
N

log
(

eNRe(µ)
∣∣∣∣1− e−2Nµ

2sinh(µ)

∣∣∣∣σe

)
= Re(µ),

(B19)

where the identity sinh(Nµ) = eNµ(1− e−2Nµ)/2 has been
exploited for the computation of this limit. This theoretical
evidence establish the connection between infinite and finite
media, as anticipated in Sec. II.

Appendix C: An approximate formula for Bragg gap centers

The maximum of the real part of µ happens when the first
invariant of [T ] is a local maximum or minimum since the
inverse hyperbolic cosine is a monotonic function. Note that,
in a stop band, for Tr([T ])> 0, µ = acosh[Tr([T ])], while for
Tr([T ]) < 0, µ = acosh[|Tr([T ])|] + jπ . So, whenever µ is
purely real and Tr([T ]) has a stationary point in frequency, a
center of the band gap is expected. Then

∂ I1

∂Ω
= −(1+Λ)

[
1+
(

ζ

2
+

1
2ζ

)]
sin[Ω(1+Λ)]+

−(1−Λ)

[
1−
(

ζ

2
+

1
2ζ

)]
sin[Ω(1−Λ)]

(C1)

and imposing this derivative to be zero is again a nonlinear
equation for which no exact general solution can be obtained.
We may take some limiting values with Λ whose effect is
stronger in the solution of this equation. For Λ = 1, the sec-
ond term in the right hand side of Eq. (C1) is zero, so it re-
mains sin(2Ω) = 0 and the band gap centers are Ω=mπ/2 for
m ∈ N. Instead, for Λ >> 1, we have 2Λsin(ΛΩ) = 0 so that
Ω = mπ/Λ, while for Λ << 1, the equation to solve becomes
2sin(Ω) = 0, resulting in Ω = mπ . In every case, the band
gap center location in frequency is only dependent on the Λ

parameter. An approximated function complying with these
limiting values is that expressed in Eq. (15).

Appendix D: Natural frequencies and frequency responses for
finite periodic structures

In order to obtain natural frequencies and frequency re-
sponses, one can use the Spectral Element Method71 (SEM).



15

Table II. Natural frequencies of finite mono-coupled periodic sys-
tems whose boundary conditions are, for the left and right ends
respectively, free-free (FF), clamped-clamped (CC), clamped-free
(CF) and free-clamped (FC).

Boundary conditions Equations
FF: fls = frs = 0→ tN,21 = 0 UN−1 = 0 & t21 = 0
CC: uls = urs = 0→ tN,12 = 0 UN−1 = 0 & t12 = 0
FC: fls = urs = 0→ tN,11 = 0 2TN +UN−1(t11− t22) = 0
CF: uls = frs = 0→ tN,22 = 0 2TN −UN−1(t11− t22) = 0

Starting from the dynamic stiffness matrix of a single element
[Kel(ω)] reported in Eq. (A3), all the element matrices can be
assembled and the boundary conditions imposed in order to
compute the global dynamic stiffness matrix [Kg(ω)]

f
g
= [Kg(ω)]ug, (D1)

where f
g

and ug are the vectors respectively containing the
forces and displacements at the global degrees of freedom of
the structure. Hence, the the global dynamic stiffness ma-
trix serves for computing natural frequency and modes as
frequency response functions. However, the transfer matrix
can help again in deriving analytical formulations for solv-
ing these problems and avoiding numerical routines. With the
usual nomenclature, Eq. (B9) can be made explicit{

urs
frs

}
=

[
+tN,11 +tN,12
−tN,21 −tN,22

]{
uls
fls

}
, (D2)

and so, thanks to these equations relating the two boundaries
of the system, the natural frequencies can be computed ac-
cording to the boundary conditions, for which the main cases
are reported in Table II. The free-free and clamped-clamped
cases have N− 1 frequencies that are determined by the first
invariant only. From Table II, it is also clear that the free-
free or clamped-clamped natural frequencies of the periodic
rod are equivalent in the majority except for a countable in-
finity of frequencies. As discussed in Sec. IV B, most of nat-
ural frequencies lie in pass band, but some (those related to
the equations t21 = 0 or t12 = 0) can appear inside band gaps.
Moreover, some peculiar frequency response functions can be
analytically calculated from Eq. (D2). By imposing here that
frs = 0, one obtains the transmittance tr of a forced-free struc-
ture

tr =
urs

fls
=− 1

tN,21
=

t̄r
ωz1

,

t̄r =
1

(sin(Ω)cos(ΛΩ)+ζ cos(Ω)sin(ΛΩ))UN−1
.

(D3)
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